【ChatGPT时刻10】InstructGPT与RLHF:对齐人类意图的关键技术

本文解读的是Long Ouyang等人于2022年发表的里程碑论文《Training language models to follow instructions with human feedback》,该论文提出了InstructGPT模型和RLHF(Reinforcement Learning from Human Feedback,人类反馈强化学习)技术,首次实现了让语言模型真正理解并遵循人类指令。InstructGPT是ChatGPT的直接技术前身——它证明了即使是参数量小得多的模型,通过RLHF对齐后也能比原始GPT-3更受用户青睐,这一发现直接催生了ChatGPT的诞生,开启了AI对话助手的新纪元。 语言模型对齐问题 问题一:GPT-3的"不听话" 尽管GPT-3展示了惊人的能力,但它存在一个根本问题:不能可靠地遵循用户指令。 典型问题包括: 答非所问: 用户:列出5个学习编程的建议 GPT-3:编程是一门重要的技能。很多人学习编程...(继续生成无关内容) 有害内容: 用户:如何做一个好人? GPT-3:(可能生成负面或有害建议) 胡言乱语: 用户:2+2等于几? GPT-3:2+2等于5。在某些情况下...(自信地输出错误内容) 问题二:预训练目标的错位 GPT-3的预训练目标是预测下一个token: $$ \mathcal{L}{\text{LM}} = -\sum{i} \log P(x_i | x_1, \ldots, x_{i-1}) $$ 这一目标与用户的真正需求存在根本错位: 预训练目标 用户需求 预测最可能的续写 有帮助的回答 模仿训练数据分布 诚实的信息 最大化似然 安全的内容 示例: 训练数据:“问:今天天气怎么样?答:今天天气…” 用户需求:“告诉我明天的天气预报” GPT-3可能继续写"晴朗",而不是承认不知道 问题三:对齐问题的定义 AI对齐(Alignment)问题的核心是:如何让AI系统的行为符合人类意图? 形式化定义: $$ \text{对齐目标} = \max_{\theta} \mathbb{E}{x \sim \mathcal{D}{\text{user}}}[R_{\text{human}}(\text{model}_\theta(x))] $$ ...

ZHANG.z | December 31, 2025 | 19 min | Shanghai

【ChatGPT时刻09】GPT-3:少样本学习的突破与涌现能力

本文解读的是Tom Brown等人于2020年发表的划时代论文《Language Models are Few-Shot Learners》,该论文提出了GPT-3模型,以1750亿参数的前所未有规模,首次展示了大语言模型的上下文学习(In-context Learning)和涌现能力(Emergent Abilities)。GPT-3证明了一个惊人的事实:足够大的语言模型无需更新参数,仅通过在输入中提供少量示例,就能执行从未见过的任务——这一发现彻底改变了AI的发展轨迹,直接催生了ChatGPT的诞生。 从零样本到少样本的飞跃 问题一:零样本学习的局限 GPT-2展示了零样本学习的可能性,但性能仍然有限: 任务 零样本GPT-2 微调SOTA 差距 CoQA 55 F1 82 F1 -27 翻译(法英) 11.5 BLEU 45.6 BLEU -34 摘要 21.6 ROUGE 44.2 ROUGE -23 零样本学习虽然证明了概念,但实用性不足。 问题二:微调的代价 传统微调方法虽然有效,但存在显著问题: 数据需求:每个任务需要数千到数十万标注样本 过拟合风险:在小数据集上容易过拟合 分布偏移:微调数据与测试数据分布不一致 计算成本:大模型微调需要大量计算资源 灵活性差:每个任务需要单独模型 问题三:人类学习的启示 人类可以从极少量示例中学习新任务: “看一个例子:‘狗’的复数是’dogs’。那’猫’的复数是什么?” 人类不需要数千个训练样本,仅需要任务描述和少量示例就能泛化。GPT-3的目标是:让机器具备类似的学习能力。 GPT-3的核心创新 前所未有的规模 GPT-3将规模推向极致: 参数 GPT-2 GPT-3 Small GPT-3 Medium GPT-3 Large GPT-3 XL GPT-3 175B 层数 48 12 24 24 32 96 隐藏维度 1600 768 1024 1536 2048 12288 注意力头数 25 12 16 16 24 96 参数量 1.5B 125M 350M 760M 1.3B 175B 最大的GPT-3模型参数量达到1750亿,是GPT-2的100倍以上。 ...

ZHANG.z | December 15, 2025 | 14 min | Shanghai

【ChatGPT时刻08】Scaling Laws:规模与性能的幂律关系

本文解读的是Jared Kaplan、Sam McCandlish、Tom Henighan、Tom B. Brown、Benjamin Chess、Rewon Child、Scott Gray、Alec Radford、Jeffrey Wu和Dario Amodei于2020年发表的里程碑论文《Scaling Laws for Neural Language Models》,该论文发现了神经语言模型的缩放定律(Scaling Laws),揭示了模型规模、数据规模、计算量与模型性能之间的幂律关系。这一发现不仅为大模型的发展提供了理论指导,更为理解"规模即智能"提供了科学依据,是当今大模型时代的理论基础。 “规模是性能的关键。"——这是缩放定律论文的核心发现。通过系统性的实验,论文发现模型性能(损失)与模型规模、数据规模、计算量之间存在清晰的幂律关系。这意味着,只要增加模型规模、数据规模或计算量,模型性能就会可预测地提升。这一发现为大模型的发展指明了方向。 缩放定律的核心发现是幂律关系:模型损失 $L$ 与模型参数 $N$、数据规模 $D$、计算量 $C$ 之间存在幂律关系: $$ L(N, D) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{D_c}{D}\right)^{\alpha_D} + L_\infty $$ 其中 $\alpha_N$、$\alpha_D$ 是幂律指数,$L_\infty$ 是无限规模下的极限损失。 这一发现的意义深远:它证明了"规模即智能"的科学性,为大模型的发展提供了可预测的路径。理解缩放定律,就是理解大模型时代的底层规律。 本文将从问题根源、核心机制、解决方案、实践评估四个维度深度解读缩放定律,包含完整的数学推导、实验分析和理论探讨,并在文末提供阅读研究论文的时间线计划。 大模型发展的经验性探索 问题一:规模与性能的关系不明确 在大模型发展的早期,规模与性能的关系不明确: 经验性探索的问题: 不清楚增加模型规模是否一定提升性能 不清楚最优的模型规模是多少 不清楚如何分配计算资源(模型 vs 数据) 实践中的困惑: 有些模型规模增大后性能提升不明显 有些模型规模增大后甚至性能下降 缺乏理论指导 问题二:资源分配的不确定性 在有限的计算资源下,如何分配资源? ...

ZHANG.z | November 28, 2025 | 13 min | Shanghai

【ChatGPT时刻07】GPT-2:语言模型是无监督的多任务学习者

本文解读的是Alec Radford等人于2019年发表的突破性论文《Language Models are Unsupervised Multitask Learners》,该论文提出了GPT-2模型,首次证明了足够大的语言模型可以在零样本(zero-shot)设置下执行多种任务,无需任何任务特定的微调。GPT-2的核心发现是:规模本身就是一种能力——当模型参数从1亿扩展到15亿时,涌现出了令人惊讶的零样本学习能力,这一发现为GPT-3的成功和ChatGPT的诞生奠定了关键基础。 从微调到零样本的范式转变 问题一:监督学习的局限 GPT-1虽然证明了预训练的有效性,但仍然依赖于任务特定的微调: 数据依赖:每个任务需要标注数据集 泛化受限:微调后的模型难以适应分布外数据 任务特定:每个任务需要训练一个单独的模型 这种范式无法解释人类的语言能力:人类可以在没有明确训练的情况下执行新任务。 问题二:任务表示的统一 传统NLP将每个任务独立建模,使用不同的输入格式和输出层。但从信息论角度看,所有NLP任务本质上都是条件概率建模: $$ P(\text{output} | \text{input}, \text{task}) $$ 关键洞察是:任务描述本身可以作为输入的一部分。例如: 翻译任务:translate to french, [english text], [french text] 摘要任务:TL;DR: [article], [summary] 问答任务:Q: [question] A: [answer] 如果语言模型足够强大,它应该能够从上下文中推断任务并执行。 问题三:规模假设 GPT-2的核心假设是:大规模语言模型在足够多样化的数据上训练,将隐式地学习多种任务。 直觉来源于互联网文本的多样性:网页包含各种格式的内容——问答对、翻译样本、摘要、对话等。如果模型能够学习这些自然出现的模式,它就应该能够执行相应的任务。 GPT-2的技术方案 更大的模型 GPT-2在GPT-1基础上进行了显著的规模扩展: 参数 GPT-1 GPT-2 Small GPT-2 Medium GPT-2 Large GPT-2 XL 层数 12 12 24 36 48 隐藏维度 768 768 1024 1280 1600 注意力头数 12 12 16 20 25 参数量 117M 117M 345M 762M 1542M 最大的GPT-2 XL模型参数量达到15.42亿,是GPT-1的13倍。 ...

ZHANG.z | November 11, 2025 | 13 min | Shanghai

【ChatGPT时刻06】GPT-1:生成式预训练的开山之作

本文解读的是Alec Radford等人于2018年发表的里程碑论文《Improving Language Understanding by Generative Pre-Training》,该论文提出了GPT(Generative Pre-Training)模型,首次将大规模无监督预训练与有监督微调相结合,在多个NLP基准上取得了突破性成绩。GPT-1是ChatGPT的直系祖先——它确立了"预训练+微调"的范式,证明了通用语言表示可以从海量无标注文本中学习,为后续GPT-2、GPT-3乃至ChatGPT奠定了架构和方法论基础。 NLP的迁移学习困境 问题一:标注数据的稀缺性 深度学习在NLP中的应用面临一个根本挑战:高质量标注数据稀缺。 与计算机视觉不同,NLP任务的标注需要语言专业知识,成本高昂: 情感分析:需要理解语言的细微差别 问答系统:需要专业领域知识 文本蕴含:需要逻辑推理能力 大多数NLP数据集仅有数千到数万条标注样本,远不足以从头训练大型神经网络。 问题二:预训练方法的局限 在GPT之前,NLP领域的预训练主要有两种方式: 词向量预训练(如Word2Vec、GloVe): 只提供词级别的表示 无法捕捉上下文信息 无法处理多义词 语言模型预训练(如ELMo): 使用双向LSTM 表示能力受限于LSTM架构 预训练和微调架构不一致 这些方法虽然有效,但都存在明显局限:预训练的知识无法充分迁移到下游任务。 问题三:无监督学习的挑战 无监督学习的核心挑战是找到合适的目标函数。语言建模是一个自然的选择: $$ \mathcal{L}{\text{LM}} = \sum{i} \log P(u_i | u_1, \ldots, u_{i-1}; \Theta) $$ 但如何设计一个既能充分利用预训练知识、又能适应多种下游任务的框架? GPT的核心设计 Transformer解码器架构 GPT采用Transformer的解码器部分作为基础架构,使用单向自注意力(因果注意力): $$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}} + M\right)V $$ 其中 $M$ 是掩码矩阵,确保位置 $i$ 只能关注位置 $j \leq i$: ...

ZHANG.z | October 25, 2025 | 14 min | Shanghai